具体代码如下:因代码太多,在下边的回复中贴一些
头文件d_hash.h
#ifndef HASH_CLASS
#define HASH_CLASS
#include <iostream>
#include <vector>
#include <list>
#include <utility>
#include “d_except.h”
using namespace std;
template <typename T, typename HashFunc>
class suhash //书hash
{
public:
#include “d_hiter.h”
// hash table iterator nested classes
suhash(int nbuckets, const HashFunc& hfunc = HashFunc());
// constructor specifying the number of buckets in the hash table
// and the hash function
suhash(T *first, T *last, int nbuckets, const HashFunc& hfunc = HashFunc());
// constructor with arguments including a pointer range
// [first, last) of values to insert, the number of
// buckets in the hash table, and the hash function
bool empty() const;
// is the hash table empty?
int size() const;
// return number of elements in the hash table
iterator find(const T& item);
const_iterator find(const T& item) const;
// return an iterator pointing at item if it is in the
// table; otherwise, return end()
pair<iterator,bool> insert(const T& item);
// if item is not in the table, insert it and
// return a pair whose iterator component points
// at item and whose bool component is true. if item
// is in the table, return a pair whose iterator
// component points at the existing item and whose
// bool component is false
// Postcondition: the table size increases by 1 if item
// is not in the table
int erase(const T& item);
// if item is in the table, erase it and return 1;
// otherwise, return 0
// Postcondition: the table size decreases by 1 if
// item is in the table
void erase(iterator pos);
// erase the item pointed to by pos.
// Precondition: the table is not empty and pos points
// to an item in the table. if the table is empty, the
// function throws the underflowError exception. if the
// iterator is invalid, the function throws the
// referenceError exception.
// Postcondition: the tree size decreases by 1
void erase(iterator first, iterator last);
// erase all items in the range [first, last).
// Precondition: the table is not empty. if the table
// is empty, the function throws the underflowError
// exception.
// Postcondition: the size of the table decreases by
// the number of elements in the range [first, last)
iterator begin();
// return an iterator positioned at the start of the
// hash table
const_iterator begin() const;
// constant version
iterator end();
// return an iterator positioned past the last element of the
// hash table
const_iterator end() const;
// constant version
private:
int numBuckets;
// number of buckets in the table水桶数
vector<list<T> > bucket;
// the hash table is a vector of lists桶
HashFunc hf;
// hash function
int hashtableSize;
// number of elements in the hash table哈希表大小
};
// constructor. create an empty hash table
template <typename T, typename HashFunc>
suhash<T, HashFunc>::suhash(int nbuckets, const HashFunc& hfunc):
numBuckets(nbuckets), bucket(nbuckets), hf(hfunc),
hashtableSize(0)
{}
// constructor. initialize table from pointer range [first, last)
template <typename T, typename HashFunc>
suhash<T, HashFunc>::suhash(T *first, T *last, int nbuckets, const HashFunc& hfunc):
numBuckets(nbuckets), bucket(nbuckets), hf(hfunc),
hashtableSize(0)
{
T *p = first;
while (p != last)
{
insert(*p);
p++;
}
}
template <typename T, typename HashFunc>
bool suhash<T, HashFunc>::empty() const
{
return hashtableSize == 0;
}
template <typename T, typename HashFunc>
int suhash<T, HashFunc>::size() const
{
return hashtableSize;
}
template <typename T, typename HashFunc>
typename suhash<T, HashFunc>::iterator suhash<T, HashFunc>::find(const T& item)
{
// hashIndex is the bucket number (index of the linked list)
int hashIndex = int(hf(item) % numBuckets);
// use alias for bucket[hashIndex] to avoid indexing
list<T>& myBucket = bucket[hashIndex];
// use to traverse the list bucket[hashIndex]
list<T>::iterator bucketIter;
// returned if we find item
// traverse list and look for a match with item
bucketIter = myBucket.begin();
while(bucketIter != myBucket.end())
{
// if locate item, return an iterator positioned in
// bucket hashIndex at location bucketIter
if (*bucketIter == item)
return iterator(this, hashIndex, bucketIter);
bucketIter++;
}
// return iterator positioned at the end of the hash table
return end();
}
template <typename T, typename HashFunc>
typename suhash<T, HashFunc>::const_iterator
suhash<T, HashFunc>::find(const T& item) const
{
// hashIndex is the bucket number (index of the linked list)
int hashIndex = int(hf(item) % numBuckets);
// use alias for bucket[hashIndex] to avoid indexing
const list<T>& myBucket = bucket[hashIndex];
// use to traverse the list bucket[hashIndex]
list<T>::const_iterator bucketIter;
// returned if we find item
// traverse list and look for a match with item
bucketIter = myBucket.begin();
while(bucketIter != myBucket.end())
{
// if locate item, return an iterator positioned in
// bucket hashIndex at location bucketIter
if (*bucketIter == item)
return const_iterator(this, hashIndex, bucketIter);
bucketIter++;
}
// return iterator positioned at the end of the hash table
return end();
}
template <typename T, typename HashFunc>
pair<typename suhash<T, HashFunc>::iterator,bool>
suhash<T, HashFunc>::insert(const T& item)
{
// hashIndex is the bucket number
int hashIndex = int(hf(item) % numBuckets);
// for convenience, make myBucket an alias for bucket[hashIndex]
list<T>& myBucket = bucket[hashIndex];
// use iterator to traverse the list myBucket
list<T>::iterator bucketIter;
// specifies whether or not we do an insert
bool success;
// traverse list until we arrive at the end of
// the bucket or find a match with item
bucketIter = myBucket.begin();
while (bucketIter != myBucket.end())
if (*bucketIter == item)
break;
else
bucketIter++;
if (bucketIter == myBucket.end())
{
// at the end of the list, so item is not
// in the hash table. call list class insert()
// and assign its return value to bucketIter
bucketIter = myBucket.insert(bucketIter, item);
success = true;
// increment the hash table size
hashtableSize++;
}
else
// item is in the hash table. duplicates not allowed.
// no insertion
success = false;
// return a pair with iterator pointing at the new or
// pre-existing item and success reflecting whether
// an insert took place
return pair<iterator,bool>
(iterator(this, hashIndex, bucketIter), success);
}
template <typename T, typename HashFunc>
void suhash<T, HashFunc>::erase(iterator pos)
{
if (hashtableSize == 0)
throw underflowError(“hash erase(pos): hash table empty”);
if (pos.currentBucket == -1)
throw referenceError(“hash erase(pos): invalid iterator”);
// go to the bucket (list object) and erase the list item
// at pos.currentLoc
bucket[pos.currentBucket].erase(pos.currentLoc);
}
template <typename T, typename HashFunc>
void suhash<T, HashFunc>::erase(typename suhash<T, HashFunc>::iterator first,
typename suhash<T, HashFunc>::iterator last)
{
if (hashtableSize == 0)
throw underflowError(“hash erase(first,last): hash table empty”);
// call erase(pos) for each item in the range
while (first != last)
erase(first++);
}
template <typename T, typename HashFunc>
int suhash<T, HashFunc>::erase(const T& item)
{
iterator iter;
int numberErased = 1;
iter = find(item);
if (iter != end())
erase(iter);
else
numberErased = 0;
return numberErased;
}
template <typename T, typename HashFunc>
typename suhash<T, HashFunc>::iterator suhash<T, HashFunc>::begin()
{
suhash<T, HashFunc>::iterator tmp;
tmp.hashTable = this;
tmp.currentBucket = -1;
// start at index -1 + 1 = 0 and search for a non-empty
// list
tmp.findNext();
return tmp;
}
template <typename T, typename HashFunc>
typename suhash<T, HashFunc>::const_iterator suhash<T, HashFunc>::begin() const
{
suhash<T, HashFunc>::const_iterator tmp;
tmp.hashTable = this;
tmp.currentBucket = -1;
// start at index -1 + 1 = 0 and search for a non-empty
// list
tmp.findNext();
return tmp;
}
template <typename T, typename HashFunc>
typename suhash<T, HashFunc>::iterator suhash<T, HashFunc>::end()
{
suhash<T, HashFunc>::iterator tmp;
tmp.hashTable = this;
// currentBucket of -1 means we are at end of the table
tmp.currentBucket = -1;
return tmp;
}
template <typename T, typename HashFunc>
typename suhash<T, HashFunc>::const_iterator suhash<T, HashFunc>::end() const
{
suhash<T, HashFunc>::const_iterator tmp;
tmp.hashTable = this;
// currentBucket of -1 means we are at end of the table
tmp.currentBucket = -1;
return tmp;
}
#endif // HASH_CLASS
头文件d_hash.h
#ifndef HASH_CLASS
#define HASH_CLASS
#include <iostream>
#include <vector>
#include <list>
#include <utility>
#include “d_except.h”
using namespace std;
template <typename T, typename HashFunc>
class suhash //书hash
{
public:
#include “d_hiter.h”
// hash table iterator nested classes
suhash(int nbuckets, const HashFunc& hfunc = HashFunc());
// constructor specifying the number of buckets in the hash table
// and the hash function
suhash(T *first, T *last, int nbuckets, const HashFunc& hfunc = HashFunc());
// constructor with arguments including a pointer range
// [first, last) of values to insert, the number of
// buckets in the hash table, and the hash function
bool empty() const;
// is the hash table empty?
int size() const;
// return number of elements in the hash table
iterator find(const T& item);
const_iterator find(const T& item) const;
// return an iterator pointing at item if it is in the
// table; otherwise, return end()
pair<iterator,bool> insert(const T& item);
// if item is not in the table, insert it and
// return a pair whose iterator component points
// at item and whose bool component is true. if item
// is in the table, return a pair whose iterator
// component points at the existing item and whose
// bool component is false
// Postcondition: the table size increases by 1 if item
// is not in the table
int erase(const T& item);
// if item is in the table, erase it and return 1;
// otherwise, return 0
// Postcondition: the table size decreases by 1 if
// item is in the table
void erase(iterator pos);
// erase the item pointed to by pos.
// Precondition: the table is not empty and pos points
// to an item in the table. if the table is empty, the
// function throws the underflowError exception. if the
// iterator is invalid, the function throws the
// referenceError exception.
// Postcondition: the tree size decreases by 1
void erase(iterator first, iterator last);
// erase all items in the range [first, last).
// Precondition: the table is not empty. if the table
// is empty, the function throws the underflowError
// exception.
// Postcondition: the size of the table decreases by
// the number of elements in the range [first, last)
iterator begin();
// return an iterator positioned at the start of the
// hash table
const_iterator begin() const;
// constant version
iterator end();
// return an iterator positioned past the last element of the
// hash table
const_iterator end() const;
// constant version
private:
int numBuckets;
// number of buckets in the table水桶数
vector<list<T> > bucket;
// the hash table is a vector of lists桶
HashFunc hf;
// hash function
int hashtableSize;
// number of elements in the hash table哈希表大小
};
// constructor. create an empty hash table
template <typename T, typename HashFunc>
suhash<T, HashFunc>::suhash(int nbuckets, const HashFunc& hfunc):
numBuckets(nbuckets), bucket(nbuckets), hf(hfunc),
hashtableSize(0)
{}
// constructor. initialize table from pointer range [first, last)
template <typename T, typename HashFunc>
suhash<T, HashFunc>::suhash(T *first, T *last, int nbuckets, const HashFunc& hfunc):
numBuckets(nbuckets), bucket(nbuckets), hf(hfunc),
hashtableSize(0)
{
T *p = first;
while (p != last)
{
insert(*p);
p++;
}
}
template <typename T, typename HashFunc>
bool suhash<T, HashFunc>::empty() const
{
return hashtableSize == 0;
}
template <typename T, typename HashFunc>
int suhash<T, HashFunc>::size() const
{
return hashtableSize;
}
template <typename T, typename HashFunc>
typename suhash<T, HashFunc>::iterator suhash<T, HashFunc>::find(const T& item)
{
// hashIndex is the bucket number (index of the linked list)
int hashIndex = int(hf(item) % numBuckets);
// use alias for bucket[hashIndex] to avoid indexing
list<T>& myBucket = bucket[hashIndex];
// use to traverse the list bucket[hashIndex]
list<T>::iterator bucketIter;
// returned if we find item
// traverse list and look for a match with item
bucketIter = myBucket.begin();
while(bucketIter != myBucket.end())
{
// if locate item, return an iterator positioned in
// bucket hashIndex at location bucketIter
if (*bucketIter == item)
return iterator(this, hashIndex, bucketIter);
bucketIter++;
}
// return iterator positioned at the end of the hash table
return end();
}
template <typename T, typename HashFunc>
typename suhash<T, HashFunc>::const_iterator
suhash<T, HashFunc>::find(const T& item) const
{
// hashIndex is the bucket number (index of the linked list)
int hashIndex = int(hf(item) % numBuckets);
// use alias for bucket[hashIndex] to avoid indexing
const list<T>& myBucket = bucket[hashIndex];
// use to traverse the list bucket[hashIndex]
list<T>::const_iterator bucketIter;
// returned if we find item
// traverse list and look for a match with item
bucketIter = myBucket.begin();
while(bucketIter != myBucket.end())
{
// if locate item, return an iterator positioned in
// bucket hashIndex at location bucketIter
if (*bucketIter == item)
return const_iterator(this, hashIndex, bucketIter);
bucketIter++;
}
// return iterator positioned at the end of the hash table
return end();
}
template <typename T, typename HashFunc>
pair<typename suhash<T, HashFunc>::iterator,bool>
suhash<T, HashFunc>::insert(const T& item)
{
// hashIndex is the bucket number
int hashIndex = int(hf(item) % numBuckets);
// for convenience, make myBucket an alias for bucket[hashIndex]
list<T>& myBucket = bucket[hashIndex];
// use iterator to traverse the list myBucket
list<T>::iterator bucketIter;
// specifies whether or not we do an insert
bool success;
// traverse list until we arrive at the end of
// the bucket or find a match with item
bucketIter = myBucket.begin();
while (bucketIter != myBucket.end())
if (*bucketIter == item)
break;
else
bucketIter++;
if (bucketIter == myBucket.end())
{
// at the end of the list, so item is not
// in the hash table. call list class insert()
// and assign its return value to bucketIter
bucketIter = myBucket.insert(bucketIter, item);
success = true;
// increment the hash table size
hashtableSize++;
}
else
// item is in the hash table. duplicates not allowed.
// no insertion
success = false;
// return a pair with iterator pointing at the new or
// pre-existing item and success reflecting whether
// an insert took place
return pair<iterator,bool>
(iterator(this, hashIndex, bucketIter), success);
}
template <typename T, typename HashFunc>
void suhash<T, HashFunc>::erase(iterator pos)
{
if (hashtableSize == 0)
throw underflowError(“hash erase(pos): hash table empty”);
if (pos.currentBucket == -1)
throw referenceError(“hash erase(pos): invalid iterator”);
// go to the bucket (list object) and erase the list item
// at pos.currentLoc
bucket[pos.currentBucket].erase(pos.currentLoc);
}
template <typename T, typename HashFunc>
void suhash<T, HashFunc>::erase(typename suhash<T, HashFunc>::iterator first,
typename suhash<T, HashFunc>::iterator last)
{
if (hashtableSize == 0)
throw underflowError(“hash erase(first,last): hash table empty”);
// call erase(pos) for each item in the range
while (first != last)
erase(first++);
}
template <typename T, typename HashFunc>
int suhash<T, HashFunc>::erase(const T& item)
{
iterator iter;
int numberErased = 1;
iter = find(item);
if (iter != end())
erase(iter);
else
numberErased = 0;
return numberErased;
}
template <typename T, typename HashFunc>
typename suhash<T, HashFunc>::iterator suhash<T, HashFunc>::begin()
{
suhash<T, HashFunc>::iterator tmp;
tmp.hashTable = this;
tmp.currentBucket = -1;
// start at index -1 + 1 = 0 and search for a non-empty
// list
tmp.findNext();
return tmp;
}
template <typename T, typename HashFunc>
typename suhash<T, HashFunc>::const_iterator suhash<T, HashFunc>::begin() const
{
suhash<T, HashFunc>::const_iterator tmp;
tmp.hashTable = this;
tmp.currentBucket = -1;
// start at index -1 + 1 = 0 and search for a non-empty
// list
tmp.findNext();
return tmp;
}
template <typename T, typename HashFunc>
typename suhash<T, HashFunc>::iterator suhash<T, HashFunc>::end()
{
suhash<T, HashFunc>::iterator tmp;
tmp.hashTable = this;
// currentBucket of -1 means we are at end of the table
tmp.currentBucket = -1;
return tmp;
}
template <typename T, typename HashFunc>
typename suhash<T, HashFunc>::const_iterator suhash<T, HashFunc>::end() const
{
suhash<T, HashFunc>::const_iterator tmp;
tmp.hashTable = this;
// currentBucket of -1 means we are at end of the table
tmp.currentBucket = -1;
return tmp;
}
#endif // HASH_CLASS
解决方案
10
至少描述一下,两种模式分别是什么结果呀。
30
有时不将“调用函数名字+各参数值,进入函数后各参数值,中间变量值,退出函数前准备返回的值,返回函数到调用处后函数名字+各参数值+返回值”这些信息写日志到文件中是无论怎么样也发现不了问题在哪里的,包括捕获各种异常、写日志到屏幕、单步或设断点或生成core文件、……这些方法都不行! 写日志到文件参考下面:
//循环向a函数每次发送200个字节长度(这个是固定的)的buffer, //a函数中需要将循环传进来的buffer,组成240字节(也是固定的)的新buffer进行处理, //在处理的时候每次从新buffer中取两个字节打印 #ifdef _MSC_VER #pragma warning(disable:4996) #endif #include <stdio.h> #include <stdlib.h> #include <string.h> #ifdef _MSC_VER #include <windows.h> #include <process.h> #include <io.h> #define MYVOID void #define vsnprintf _vsnprintf #else #include <unistd.h> #include <sys/time.h> #include <pthread.h> #define CRITICAL_SECTION pthread_mutex_t #define MYVOID void * #endif //Log{ #define MAXLOGSIZE 20000000 #define MAXLINSIZE 16000 #include <time.h> #include <sys/timeb.h> #include <stdarg.h> char logfilename1[]="MyLog1.log"; char logfilename2[]="MyLog2.log"; static char logstr[MAXLINSIZE+1]; char datestr[16]; char timestr[16]; char mss[4]; CRITICAL_SECTION cs_log; FILE *flog; #ifdef _MSC_VER void Lock(CRITICAL_SECTION *l) { EnterCriticalSection(l); } void Unlock(CRITICAL_SECTION *l) { LeaveCriticalSection(l); } void sleep_ms(int ms) { Sleep(ms); } #else void Lock(CRITICAL_SECTION *l) { pthread_mutex_lock(l); } void Unlock(CRITICAL_SECTION *l) { pthread_mutex_unlock(l); } void sleep_ms(int ms) { usleep(ms*1000); } #endif void LogV(const char *pszFmt,va_list argp) { struct tm *now; struct timeb tb; if (NULL==pszFmt||0==pszFmt[0]) return; vsnprintf(logstr,MAXLINSIZE,pszFmt,argp); ftime(&tb); now=localtime(&tb.time); sprintf(datestr,"%04d-%02d-%02d",now->tm_year+1900,now->tm_mon+1,now->tm_mday); sprintf(timestr,"%02d:%02d:%02d",now->tm_hour ,now->tm_min ,now->tm_sec ); sprintf(mss,"%03d",tb.millitm); printf("%s %s.%s %s",datestr,timestr,mss,logstr); flog=fopen(logfilename1,"a"); if (NULL!=flog) { fprintf(flog,"%s %s.%s %s",datestr,timestr,mss,logstr); if (ftell(flog)>MAXLOGSIZE) { fclose(flog); if (rename(logfilename1,logfilename2)) { remove(logfilename2); rename(logfilename1,logfilename2); } } else { fclose(flog); } } } void Log(const char *pszFmt,...) { va_list argp; Lock(&cs_log); va_start(argp,pszFmt); LogV(pszFmt,argp); va_end(argp); Unlock(&cs_log); } //Log} #define ASIZE 200 #define BSIZE 240 #define CSIZE 2 char Abuf[ASIZE]; char Cbuf[CSIZE]; CRITICAL_SECTION cs_HEX; CRITICAL_SECTION cs_BBB; struct FIFO_BUFFER { int head; int tail; int size; char data[BSIZE]; } BBB; int No_Loop=0; void HexDump(int cn,char *buf,int len) { int i,j,k; char binstr[80]; Lock(&cs_HEX); for (i=0;i<len;i++) { if (0==(i%16)) { sprintf(binstr,"%03d %04x -",cn,i); sprintf(binstr,"%s %02x",binstr,(unsigned char)buf[i]); } else if (15==(i%16)) { sprintf(binstr,"%s %02x",binstr,(unsigned char)buf[i]); sprintf(binstr,"%s ",binstr); for (j=i-15;j<=i;j++) { sprintf(binstr,"%s%c",binstr,("!"<buf[j]&&buf[j]<="~")?buf[j]:"."); } Log("%s\n",binstr); } else { sprintf(binstr,"%s %02x",binstr,(unsigned char)buf[i]); } } if (0!=(i%16)) { k=16-(i%16); for (j=0;j<k;j++) { sprintf(binstr,"%s ",binstr); } sprintf(binstr,"%s ",binstr); k=16-k; for (j=i-k;j<i;j++) { sprintf(binstr,"%s%c",binstr,("!"<buf[j]&&buf[j]<="~")?buf[j]:"."); } Log("%s\n",binstr); } Unlock(&cs_HEX); } int GetFromRBuf(int cn,CRITICAL_SECTION *cs,struct FIFO_BUFFER *fbuf,char *buf,int len) { int lent,len1,len2; lent=0; Lock(cs); if (fbuf->size>=len) { lent=len; if (fbuf->head+lent>BSIZE) { len1=BSIZE-fbuf->head; memcpy(buf ,fbuf->data+fbuf->head,len1); len2=lent-len1; memcpy(buf+len1,fbuf->data ,len2); fbuf->head=len2; } else { memcpy(buf ,fbuf->data+fbuf->head,lent); fbuf->head+=lent; } fbuf->size-=lent; } Unlock(cs); return lent; } MYVOID thdB(void *pcn) { char *recv_buf; int recv_nbytes; int cn; int wc; int pb; cn=(int)pcn; Log("%03d thdB thread begin...\n",cn); while (1) { sleep_ms(10); recv_buf=(char *)Cbuf; recv_nbytes=CSIZE; wc=0; while (1) { pb=GetFromRBuf(cn,&cs_BBB,&BBB,recv_buf,recv_nbytes); if (pb) { Log("%03d recv %d bytes\n",cn,pb); HexDump(cn,recv_buf,pb); sleep_ms(1); } else { sleep_ms(1000); } if (No_Loop) break;// wc++; if (wc>3600) Log("%03d %d==wc>3600!\n",cn,wc); } if (No_Loop) break;// } #ifndef _MSC_VER pthread_exit(NULL); #endif } int PutToRBuf(int cn,CRITICAL_SECTION *cs,struct FIFO_BUFFER *fbuf,char *buf,int len) { int lent,len1,len2; Lock(cs); lent=len; if (fbuf->size+lent>BSIZE) { lent=BSIZE-fbuf->size; } if (fbuf->tail+lent>BSIZE) { len1=BSIZE-fbuf->tail; memcpy(fbuf->data+fbuf->tail,buf ,len1); len2=lent-len1; memcpy(fbuf->data ,buf+len1,len2); fbuf->tail=len2; } else { memcpy(fbuf->data+fbuf->tail,buf ,lent); fbuf->tail+=lent; } fbuf->size+=lent; Unlock(cs); return lent; } MYVOID thdA(void *pcn) { char *send_buf; int send_nbytes; int cn; int wc; int a; int pa; cn=(int)pcn; Log("%03d thdA thread begin...\n",cn); a=0; while (1) { sleep_ms(100); memset(Abuf,a,ASIZE); a=(a+1)%256; if (16==a) {No_Loop=1;break;}//去掉这句可以让程序一直循环直到按Ctrl+C或Ctrl+Break或当前目录下存在文件No_Loop send_buf=(char *)Abuf; send_nbytes=ASIZE; Log("%03d sending %d bytes\n",cn,send_nbytes); HexDump(cn,send_buf,send_nbytes); wc=0; while (1) { pa=PutToRBuf(cn,&cs_BBB,&BBB,send_buf,send_nbytes); Log("%03d sent %d bytes\n",cn,pa); HexDump(cn,send_buf,pa); send_buf+=pa; send_nbytes-=pa; if (send_nbytes<=0) break;// sleep_ms(1000); if (No_Loop) break;// wc++; if (wc>3600) Log("%03d %d==wc>3600!\n",cn,wc); } if (No_Loop) break;// } #ifndef _MSC_VER pthread_exit(NULL); #endif } int main() { #ifdef _MSC_VER InitializeCriticalSection(&cs_log); InitializeCriticalSection(&cs_HEX); InitializeCriticalSection(&cs_BBB); #else pthread_t threads[2]; int threadsN; int rc; pthread_mutex_init(&cs_log,NULL); pthread_mutex_init(&cs_HEX,NULL); pthread_mutex_init(&cs_BBB,NULL); #endif Log("Start===========================================================\n"); BBB.head=0; BBB.tail=0; BBB.size=0; #ifdef _MSC_VER _beginthread((void(__cdecl *)(void *))thdA,0,(void *)1); _beginthread((void(__cdecl *)(void *))thdB,0,(void *)2); #else threadsN=0; rc=pthread_create(&(threads[threadsN++]),NULL,thdA,(void *)1);if (rc) Log("%d=pthread_create %d error!\n",rc,threadsN-1); rc=pthread_create(&(threads[threadsN++]),NULL,thdB,(void *)2);if (rc) Log("%d=pthread_create %d error!\n",rc,threadsN-1); #endif if (!access("No_Loop",0)) { remove("No_Loop"); if (!access("No_Loop",0)) { No_Loop=1; } } while (1) { sleep_ms(1000); if (No_Loop) break;// if (!access("No_Loop",0)) { No_Loop=1; } } sleep_ms(3000); Log("End=============================================================\n"); #ifdef _MSC_VER DeleteCriticalSection(&cs_BBB); DeleteCriticalSection(&cs_HEX); DeleteCriticalSection(&cs_log); #else pthread_mutex_destroy(&cs_BBB); pthread_mutex_destroy(&cs_HEX); pthread_mutex_destroy(&cs_log); #endif return 0; }